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1. INTRODUCTION

In this Part II of this series we shall continue the discussion about numerical methods for
hyperbolic initial boundary value problems (IBVPs). This part is devoted to solving one- and
two-dimensional hyperbolicsystems. In Section 2, the theory and methodology presented
in Part I [7] are modified to accommodate partially reflecting or absorbing boundary condi-
tions and to solve the one-dimensional hyperbolic system. As was mentioned in Part I, time
stability in the scalar case does not imply time stability for systems; see [1, 2]. Despite
the fact that for hyperbolic systems we succeeded in proving the time stability only for
some special cases, numerical examples show that the method is effective and provide time
stability even when a theoretical foundation is lacking. As in the scalar case, the fourth-
and sixth-order schemes are used for solving model problems. The formal accuracy of
each scheme is determined by doing a grid refinement study. The numerical results show
that the convergence rate of the schemes used here agrees well with theory. In order to
investigate numerically whether the schemes are time stable we compute the error for long
time integrations and additionally determine the eigenvalue spectrum of the semidiscrete
system. In all cases, no eigenvalues with a positive real part are found which indicate the
time stability of the schemes.

67

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press

All rights of reproduction in any form reserved.



68 ABARBANEL, CHERTOCK, AND YEFET

As an application where high-order accurate approximations are needed we consider in
Section 3 the two-dimensional Maxwell’s equations in free space. The SAT method used
for the diagonalized system in 1-D is adopted to solve the two-dimensional system, which
cannot be digonalized. The problem is solved using both the fourth- and the sixth-order
schemes. Numerical results are compared with those obtained by Turkel and Yefet in [5,
6]. They solved the same problem by using the Ty(2,4) scheme, which is a fourth-order
compact implicit difference scheme on staggered meshes.

Section 2 of Part II was written by the authors of Part I. Section 3 of Part II was written
in collaboration with A. Yefet.

2. 1-D HYPERBOLIC SYSTEMS

2.1. General Theory and Description of the Method

Consider a first-order hyperbolic system of partial differential equations

∂u
∂t
+ A

∂u
∂x
= 0, 0≤ x ≤ 1, t ≥ 0, (2.1)

where without loss of generalityu(x, t)= (u1(x, t), . . . ,ur (x, t))T and A is a diagonal
matrix with constant entries:

A =



λ1

. . .

λk

λk+1

. . .

λr


,

λ1 > λ2 > · · · , λk > 0,

λr < · · · < λk+2 < λk+1 < 0.

The solution of (2.1) is uniquely determined if we prescribe initial values

u(x, 0) = f(x), 0≤ x ≤ 1, (2.2)

and boundary conditions

uI(0, t) = LuII (0, t)+ gI(t)
(2.3)

uII (1, t) = RuI(1, t)+ gII (t), t ≥ 0,

whereL andR are fixed matrices of ordersk× (r − k) and (r − k)× k, respectively,gI(t)
is a givenk-vector,gII (t) is a given (r − k)-vector, and

uI = (u1, . . . ,uk)T , uII = (uk+1, . . . ,ur )T (2.4)

is a partition ofu into its outflow and inflow components, respectively, corresponding to
the partition ofA.

It is well known that (2.3) is well posed for anyL and R, but in order to assure that
the solution of (2.1) is bounded in time (whengI(t) andgII (t) are bounded in time), it is



HYPERBOLIC PDEs, II 69

sufficient to assume that

‖L‖ · ‖R‖ ≤ 1, (2.5)

where the nonsquare matrix norm is defined by

‖L‖ = ρ(LT L)1/2 (2.6)

andρ(LT L) is the spectral radius ofLT L.
In order to solve the initial-boundary value problem (2.1) by a finite-difference approxi-

mation, we introduce, as in the scalar case, a mesh sizeh and denote byui = (ui
0, u

i
1, . . . ,

ui
N)

T , i = 1, . . . , r , vectors of unknowns corresponding to the grid pointsx0, . . . , xN

(N=1/h) and byvi the numerical approximation toui . Assuming that we have the same
matricesP, Q, P̃, Q̃ and the the same vectorsES0, ESN as in the scalar case—see Part I—
we approximate the (2.1) by the scheme

P
dvi

dt
= −λi Qvi + λi ES0

(
vi

0− (LvII + gI)i0
)
, 1≤ i ≤ k

(2.7)

P̃
dvi

dt
= −λi Q̃vi + λi ESN

(
vi

N − (RvI + gII )iN
)
, k+ 1≤ i ≤ r.

To prove the convergence of the scheme (2.7) we will derive an equation for the error
functionE and show that its discrete norm (to be defined later) is bounded by a function
F(t, h, u), wheret, h, andu are the time, the mesh size, and the exact solution, respectively.
It will be shown thatF(t, h, u) is bounded in time by a linear growth and tends to zero with
mesh refinement.

Sinceui
0− (LuII + gI)i0= 0 for 1≤ i ≤ k andui

N − (RuI + gII )iN = 0 for k+ 1≤ i ≤ r ,
we may write for the vectorsui

P
dui

dt
= −λi Qui + λi ES0

(
ui

0− (LuII + gI)i0
)+ PT i , 1≤ i ≤ k

(2.8)

P̃
dui

dt
= −λi Q̃ui + λi ESN

(
ui

N − (RuI + gII )iN
)+ P̃T i , k+ 1≤ i ≤ r,

whereT= (T0, . . . ,Tk,Tk+1, . . . ,Tr ) is ther × N long vector of the truncation errors due
to numerical differencing.

Denote byεi = ui − vi (1≤ i ≤ r ) the solution error vectors and subtract (2.7) from (2.8)
to get

P
dεi

dt
= −λi Qε

i + λi ES0
(
εi

0− (LεII )i0
)+ PT i , 1≤ i ≤ k

(2.9)

P̃
dεi

dt
= −λi Q̃ε

i + λi ESN
(
εi

N − (RεI)iN
)+ P̃T i , k+ 1≤ i ≤ r.

We define now the scalar product

(εi , ε j ) =
N∑

m=0

εi
mε

j
m (2.10)
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and the discrete norms

‖εI‖2 =
k∑

i=1

‖R‖
λi

(εi , εi ), ‖εII‖2 =
r∑

i=k+1

‖L‖
|λi | (ε

i , εi ) (2.11)

and

‖E‖2 = ‖εI‖2+ ‖εII‖2, (2.12)

whereE is ther × N long error vector whose firstk× N entries are the entires ofεI and
the other(r − k)× N entries are the ones ofεII .

Differentiating the scalar products (Pεi , εi ) and (P̃εi , εi ) and using Eq. (2.9) yields

d

dt
(Pεi , εi ) = −λi (Qε

i , εi )+ λi ( ES0, ε
i )
(
εi

0− (LεII )i0
)+ (PT i , εi ), 1≤ i ≤ k

(2.13)
d

dt
(P̃εi , εi ) = −λi (Q̃ε

i , εi )+ λi ( ESN, ε
i )
(
εi

N − (RεI)iN
)+ (P̃T i , εi ), k+ 1≤ i ≤ r.

We now use the definitions ofES0 and ESN , the properties ofQ and Q̃ (from assumption 3
and remarks from Part I), and the fact that theλi are positive for 1≤ i ≤ k and negative for
k+ 1≤ i ≤ r to get

d

dt
(Pεi , εi ) = λi (τ − 1)q00

(
εi

0

)2− λi q11
(
εi

1

)2− λi τq00(Lε
II )i0ε

i
0

− λi (q01+ q10)ε
i
1(Lε

II )i0− λi
[
qN N

(
εi

N

)2+ (qN−1N + qN N−1)ε
i
N−1ε

i
N

+qN−1N−1
(
εi

N−1

)2]+ (PT i , εi ), 1≤ i ≤ k

(2.14)
d

dt
(P̃εi , εi ) = |λi |(τ − 1)q00

(
εi

N

)2− |λi |q11
(
εi

N−1

)2− |λi |τq00(Rε
I)iNε

i
N

− |λi |(q01+ q10)ε
i
N−1(Rε

I)iN − |λi |
[
qN N

(
εi

0

)2+ (qN−1N + qN N−1)ε
i
0ε

i
1

+qN−1N−1
(
εi

1

)2]+ (P̃T i , εi ), k+ 1≤ i ≤ r.

We multiply the first equation of (2.14) by‖R‖/λi and sum up fromi = 0 to k, and we
multiply the second equation by‖L‖/|λi | and sum up fromi = k+ 1 to r . We then add
these two sums and, assuming thatqN−1N−1 is positive, the resulting expression may be
written thusly:

d

dt

k∑
i=0

‖R‖
λi

(Pεi , εi )+ d

dt

r∑
i=k+1

‖L‖
|λi | (P̃ε

i , εi )

=
k∑

i=0

[
‖R‖(τ − 1)q00

(
εi

0

)2− ‖R‖q11
(
εi

1

)2− ‖R‖τq00(Lε
II )i0ε

i
0

−‖R‖(q01+ q10)ε
i
1(Lε

II )i0− ‖R‖
(

qN−1N + qN N−1

2
√

qN−1N−1
εi

N +
√

qN−1N−1ε
i
N−1

)2
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−‖R‖
(

qN N − (qN−1N + qN N−1)
2

4qN−1N−1

)(
εi

N

)2
]
+

k∑
i=0

‖R‖
λi

(PT i , εi )

+
r∑

i=k+1

[
‖L‖(τ − 1)q00

(
εi

N

)2− ‖L‖q11
(
εi

N−1

)2− ‖L‖τq00(Rε
I)iNε

i
N

−‖L‖(q01+ q10)ε
i
N−1(Rε

I)iN − ‖L‖
(

qN−1N + qN N−1

2
√

qN−1N−1
εi

0+
√

qN−1N−1ε
i
1

)2

−‖L‖
(

qN N − (qN−1N + qN N−1)
2

4qN−1N−1

)(
εi

0

)2
]
+

r∑
i=k+1

‖L‖
|λi | (P̃T i , εi ).

Again, as in Part I, we require the expressionqN Nε
2
0+ (qN−1N + qN N−1)ε0ε1+qN Nε

2
1 to

be positive for allε0, ε1∈R. This implies

qN−1N−1 > 0, qN N − (qN−1N + qN N−1)
2

4qN−1N−1
> 0. (2.15)

We next define new discrete scalar products (note the difference from (2.10):

[εI, εI ]m =
k∑

i=1

εi
mε

i
m

(2.16)

[εII , εII ]m =
r∑

i=k+1

εi
mε

i
m.

Replacing the sums in the last equation with these vector operations and using the properties
of the matricesP and P̃ we get an estimate for the discrete norm‖E‖,

1

2
c0

d

dt
‖E‖2 ≤ (τ − 1)q00‖R‖[εI, εI ]0− ‖R‖q11[ε

I, εI ]1− ‖R‖τq00[Lε
II , εI ]0

−β‖R‖[εI, εI ]N + (τ − 1)q00‖L‖[εII , εII ]N − ‖L‖q11[ε
II , εII ]N−1

−‖L‖τq00[Rε
I, εII ]N − β‖L‖[εII , εII ]0− 2‖R‖q01

k∑
i=1

(εI)i1(Lε
II )i0

− 2‖L‖q01

r∑
i=k+1

(εII )iN−1(Rε
I)iN +

k∑
i=0

‖R‖
λi

(PT i , εi )+
r∑

i=k+1

‖L‖
|λi | (P̃T i , εi),

where

q01 = 1

2
(q01+ q10), β = qN N − (qN−1N + qN N−1)

2

4qN−1N−1
> 0.

Substituting the estimates

[LεII , εI ]0 ≤ ‖L‖ · ‖εII‖0 · ‖εI‖0,
[RεI, εII ]N ≤ ‖R‖ · ‖εI‖N · ‖εII‖N,
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k∑
i=1

(εI)i1(Lε
II )i0 ≤

√√√√ k∑
i=1

[
(εI)i1

]2 · k∑
i=1

[
(LεII )i0

]2 ≤ ‖L‖ · ‖εI‖1 · ‖εII‖0,

r∑
i=k+1

(εII )iN−1(Rε
I)iN ≤

√√√√ r∑
i=k+1

[
(εII )iN−1

]2 · r∑
i=k+1

[
(RεI)iN

]2 ≤ ‖R‖ · ‖εI‖N · ‖εII‖N−1

where

‖εI‖m =
√

[εI, εI ]m,

‖εII‖m =
√

[εII , εII ]m, m= 0, 1, N − 1, N,

into the last inequality for‖E‖ and collecting like terms yields

1

2
c0

d

dt
‖E‖2 ≤ {(τ − 1)q00 · ‖R‖ · ‖εI‖20− ‖R‖q11‖εI‖21

+ |τq00| · ‖R‖ · ‖L‖ · ‖εI‖0 · ‖εII‖0+ 2|q01| · ‖R‖ · ‖L‖ · ‖εI‖1 · ‖εII‖0
−β‖L‖ · ‖εII‖20

}+ {(τ − 1)q00 · ‖R‖ · ‖εII‖2N − ‖R‖q11‖εI‖2N−1

+ |τq00| · ‖R‖ · ‖L‖ · ‖εI‖N · ‖εII‖N + 2|q01| · ‖R‖ · ‖L‖ · ‖εI‖N · ‖εII‖N−1

−β‖L‖ · ‖εI‖2N
}+ k∑

i=0

‖R‖
λi

(PT i , εi )+
r∑

i=k+1

‖L‖
|λi | (P̃T i , εi ). (2.17)

We require now each curly bracket to be nonpositive. Thus we need

(τ − 1)q00 · ‖R‖ · ‖εI‖20− ‖R‖q11‖εI‖21+ |τq00| · ‖R‖ · ‖L‖ · ‖εI‖0 · ‖εII‖0
+ 2|q01| · ‖R‖ · ‖L‖ · ‖εI‖1 · ‖εII‖0− β‖L‖ · ‖εII‖20 ≤ 0 (2.18)

and also

(τ − 1)q00 · ‖R‖ · ‖εII‖2N − ‖R‖q11‖εI‖2N−1+ |τq00| · ‖R‖ · ‖L‖ · ‖εI‖N · ‖εII‖N

+ 2|q01| · ‖R‖ · ‖L‖ · ‖εI‖N · ‖εII‖N−1− β‖L‖ · ‖εI‖2N ≤ 0 (2.19)

for all εI, εII ∈R.
It is possible to show that both inequalities are satisfied (and hence the algorithm is time

stable) if

q11 > 0, qN−1N−1 > 0, (τ − 1)q00 < 0,

β = qN N − (qN−1N +qN N−1)
2

4qN−1N−1
> 0, (2.20)

1

4
τ 2q11q

2
00‖R‖ · ‖L‖ + (τ − 1)q00

(
βq11− q2

01‖R‖ · ‖L‖
)
< 0.

Assuming for the moment that these inequalities hold we can write

1

2
c0

d

dt
‖E‖2 ≤

k∑
i=0

‖R‖
λi

(PT i , εi )+
r∑

i=k+1

‖L‖
|λi | (P̃T i , εi ). (2.21)
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Using (2.9) from Part I and the definition (2.11) of the discrete norms we get

1

2
c0

d

dt
‖E‖2 ≤ c1‖T‖‖E‖ (2.22)

and after dividing by‖E‖,
d

dt
‖E‖ ≤ c1

c0
‖T‖, (2.23)

leading to

‖E‖ ≤ c1

c0
sup

0≤τ≤t
‖T‖ t. (2.24)

We are ready now to formulate the theorem:

THEOREM2.1. Let the method defined by Eq.(2.7) satisfy(2.20), for the discretization
of the hyperbolic system(2.1) with initial and boundary conditions(2.2), (2.3). Then it is
stable and leads to an error whose norm is growing linearly in time.

Remark. We recall that in order to solve the hyperbolic system numerically we use the
same matricesP, Q, P̃, Q̃ and the same vectorsES0, ESN as in the scalar case, i.e.,

q00 = −2

3
, q11 = 1

6
> 0, q01 = 1

3
,

β = qN N − (qN−1N + qN N−1)
2

4qN−1N−1
= 1

6
> 0.

With this choice of the matrixQ the inequalities (2.20) hold if

1− ‖R‖ · ‖L‖ − √D

2‖R‖ · ‖L‖ ≤ τ ≤ 1− ‖R‖ · ‖L‖ +√D

2‖R‖ · ‖L‖ , (2.25)

where

D = (1− ‖R‖ · ‖L‖)(1− 5‖R‖ · ‖L‖).

We can chooseτ , which satisfies (2.25), ifD≥ 0. This happens if‖R‖ · ‖L‖≤1/5. But
this is only a sufficient condition, because numerical experiments (see the discussion in the
next subsection) show that the numerical solution converges to the analytical solution for
all t <∞ even if 1/5< ‖R‖ · ‖L‖ ≤ 1.

Similarly, in the case of the fourth-order scheme,

q00 = −5

8
, q11 = 1

8
> 0, q01 = 1

4
,

β = qN N − (qN−1N + qN N−1)
2

4qN−1N−1
= 1

4
> 0,

leading to

4− 2‖R‖ · ‖L‖ − 2
√

D

5‖R‖ · ‖L‖ ≤ τ ≤ 4− 2‖R‖ · ‖L‖ + 2
√

D

5‖R‖ · ‖L‖ , (2.26)
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where

D = (2− ‖R‖ · ‖L‖)(2− 6‖R‖ · ‖L‖).

We can findτ , which satisfies (2.26), if‖R‖·‖L‖≤1/3. Numerical experiments performed
in the next section show that the fourth-order scheme is time stable even if 1/3< ‖R‖ ·
‖L‖≤1.

However, if‖R‖ ·‖L‖≤1/5 in the case of the sixth-order scheme (or‖R‖ ·‖L‖≤1/3 in
the case of the fourth-order scheme) then (2.18) and (2.19) are strictly negative and (2.24)
is replaced, just as in Part I, by a constant bound.

2.2. Numerical Experiments

Consider the hyperbolic system

∂u
∂t
+ A

∂u
∂x
= 0, 0≤ x ≤ 1, t ≥ 0, (2.27)

where

A =
(

1 0
0 −1

)
, u =

(
u
v

)
, (2.28)

with initial data

u(x, 0) = sin 2πx, v(x, 0) = − sin 2πx, 0≤ x ≤ 1, (2.29)

and boundary conditions

u(0, t) = v(0, t), v(1, t) = u(1, t), t ≥ 0. (2.30)

The exact solution is

u(x, t) = sin 2π(x − t),
(2.31)

v(x, t) = −sin 2π(x + t), 0≤ x ≤ 1, t ≥ 0.

Note that due to (2.30),‖R‖ · ‖L‖=1 and thus we test the most severe reflection case.
As in the scalar case of Part I we solve the problem (2.27)–(2.30) numerically using

two different schemes: fourth-order compact with third-order boundary closure and sixth-
order compact with fifth-order boundary closure. And again we compare two methods for
implementation of the boundary conditions: (i) conventional, which implies the overwriting
of the value of the solution at the boundary point with the analytic boundary condition after
each Runge–Kutta stage, and (ii) the SAT method described in the previous subsection. In
all cases, the standard fourth-order Runge–Kutta method is used for time integration, with
a suitable1t such that the desired overall accuracy is maintained.1

1 We did not a use sixth-order Runge–Kutta integrator because we are not aware of anystablesixth-order
Runge–Kutta method suitable for a system of ODEs. However, in the scalar case of Part I we did use a sixth-order
Runge–Kutta method.
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FIG. 1. TheL2-error as a function of time for the fourth-order approximation using conventional implemen-
tation of boundary conditions with CFL= 0.5.

Conventional boundary conditions.In Part I it was shown that for the scalar case the
fourth-order scheme is time stable while the sixth-order scheme is not when using con-
ventional implementation of boundary conditions. Using these schemes to solve the test
problem (2.27)–(2.30) we found that neither scheme was time stable when applied to a sys-
tem of equations. Figures 1 and 2 showL2-error as a function of time for the fourth-order
compact scheme and sixth-order compact scheme, respectively, for different grids. As one
can see, results diverge exponentially from the analytic solution.

On the other hand, we shall show that SAT procedure ensures time stability (only a
sublinear temporal growth) for the hyperbolic system, for both the fourth- and the sixth-
order schemes.

SAT boundary conditions.First we verify that SAT implementation of boundary con-
ditions retains the formal accuracy of the spatial operator. Results of the grid convergence
study of the spatial operators with SAT parameterτ = 2 for both orders of accuracy are
presented in Table I. The entries are the absolute error log10(L2) at a fixed timet = T and
the convergence rate. The convergence rate is computed as

log10

(‖u− uh1‖2
‖u− uh2‖2

)/
log10

(
h1

h2

)
, (2.32)

whereu= (u(x0, t), u(x2, t), . . . ,u(xN, t))T is the exact solution,uh is the numerical so-
lution with mesh widthh, and‖u− uh‖2 is the discreteL2 norm of the absolute error. The
data in this table indicate that the convergence rate asymptotically approaches the theoret-
ical value of 4 for the fourth-order operator and 6 for the sixth-order operator. Figures 3
and 4 show the error as a function of time for long time integration using the fourth-order
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FIG. 2. The L2-error as a function of time for the sixth-order approximation using conventional implemen-
tation of boundary conditions with CFL= 0.1.

and the sixth-order difference operators, respectively, for different grids. No exponential
growth exists, and both schemes are found to be strictly stable. In Figs. 5 and 6 the eigen-
value spectrum for both schemes for different grids is shown. One can see that there are no
eigenvalues with a positive real part.

3. 2-D HYPERBOLIC SYSTEMS

3.1. Application to Maxwell’s Equations

As an application where high-order accurate approximation are needed we consider
Maxwell’s equations. In free space they are given by

TABLE I

Grid Convergence of Two High-Order Schemes forut + Aux = 0, Using the SAT

Implementation of Boundary Conditions with the SAT Parameterτ = 2 and CFL = 0.5

for the Fourth-Order Scheme, CFL = 0.1 for the Sixth-Order Scheme (T = 10)

Fourth-order compact Sixth-order compact

Grid log10(L2) Rate log10(L2) Rate

21 −2.657 −4.371
31 −3.332 3.83 −5.462 6.19
41 −3.817 3.89 −6.231 6.15
61 −4.506 3.91 −7.299 6.07
81 −4.998 3.94 −8.041 5.97
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FIG. 3. The L2-error as a function of time for the fourth-order approximation using SAT method for imple-
mentation of boundary conditions withτ = 2, CFL= 0.5.

FIG. 4. The L2-error as a function of time for the sixth-order approximation using SAT method for imple-
mentation of boundary conditions withτ = 2, CFL= 0.1.
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FIG. 5. Semidiscrete eigenvalue spectrum for the fourth-order approximation using SAT method for imple-
mentation of boundary conditions withτ = 2.

FIG. 6. Magnification of semidiscrete eigenvalue spectrum close to the imaginary axis for the sixth-order
approximation using the SAT method for implementation of boundary conditions withτ = 2.
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∂B

∂ t̃
+∇ × E = 0 (Faraday’s law),

∂D

∂ t̃
−∇ × H = J (Ampere’s law),

(3.1)
B = µH,

D = εE,

coupled with Gauss’s law

∇ · B = 0,
(3.2)∇ · D = 0.

If we assume perfectly conducting conditions at the outer edge of the domain then the
boundary conditions are

En× E = 0,
(3.3)En · H = 0,

whereEn is a normal vector to the surface of the domain.
To simplify the notation we shall consider the two dimensional case withε, µ constants

andJ= 0. We nondimensionalize the variables,t = ct̃/L , x= x̃/L , y= ỹ/L , E= E, H=√
(ε/µ)H, whereε andµ are the permittivity and permeability coefficients, in free space,

respectively,c is the speed of light, andL is a length of the domain. The 2-D version of system
(3.1), (3.2) decouples into two independent sets of equations. We shall consider the TM
(transverse magnetic) system in a square domainÄ={(x, y)∈R2 | 0≤ x≤ 1, 0≤ y≤ 1}.
The TM equations then become

∂Ez

∂t
= ∂Hy

∂x
− ∂Hx

∂y
(x, y) ∈ Ä, t ≥ 0

∂Hx

∂t
= −∂Ez

∂y
(3.4)

∂Hy

∂t
= ∂Ez

∂x

with the boundary conditions

Ez(0, y, t) = Ez(1, y, t) = 0, t ≥ 0,
(3.5)

Ez(x, 0, t) = Ez(x, 1, t) = 0.

We take as initial conditions,

Ez(x, y, 0) = sin(ω1x) sin(ω2y), (x, y) ∈ Ä,
Hx(x, y, 0) = 0, (3.6)

Hy(x, y, 0) = 0,

whereω1=πn andω2=πm (n,m=±1,±2,±3, . . .).
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The exact solution is

Ez(x, y, t) = sin(ω1x) sin(ω2y) cos(ωt),

Hx(x, y, t) = −ω2

ω
sin(ω1x) cos(ω2y) sin(ωt), (3.7)

Hy(x, y, t) = ω1

ω
cos(ω1x) sin(ω2y) sin(ωt),

whereω=
√
ω2

1+ω2
2.

The matrix form of the equations (3.4) is

∂

∂t

 Ez

Hx

Hy

 =
0 0 1

0 0 0
1 0 0

 ∂

∂x

 Ez

Hx

Hy

+
 0 −1 0
−1 0 0
0 0 0

 ∂

∂y

 Ez

Hx

Hy



= A1
∂

∂x

 Ez

Hx

Hy

+ A2
∂

∂y

 Ez

Hx

Hy

 , (3.8)

where

A1 =
0 0 1

0 0 0
1 0 0

 , A2 =
 0 −1 0
−1 0 0
0 0 0

 .
The SAT method for implementation of boundary conditions is used for diagonalized sys-
tems in one dimension. We encounter a problem when dealing with this two-dimensional
problem, because it is impossible to diagonalize the two matricesA1 and A2 simultane-
ously. To overcome this problem of how to state the boundary conditions we consider the
two-dimensional Maxwell’s equations (3.4) in each space dimension independently. We
decompose (3.8) into the one-dimensional Maxwell’s equations2

∂

∂t

(
Ez

Hy

)
=
(

0 1
1 0

)
∂

∂x

(
Ez

Hy

)
, (3.9)

∂

∂t

(
Ez

Hx

)
= −

(
0 1
1 0

)
∂

∂y

(
Ez

Hx

)
, (3.10)

with Ez= 0 at the boundaries (see (3.5)), and we denote

A =
(

0 1
1 0

)
.

We shall limit our detailed discussion only to Eq. (3.9). The treatment of the equation
(3.10) is similar.

2 This decomposition is not, of course, equivalent to the original system (3.8). It is done for lack of a 2-D
characteristic theory. This practice follows what has been done previously in the context of 2-D gas dynamics;
see [4].
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We diagonalize the matrixA and change the variables. LetM be a diagonalizing matrix
of A and let3 be a diagonal matrix having the eigenvalues ofA, i.e.,

M−1AM = 3 =
(−1 0

0 1

)
(3.11)

and

M =
(−1 1

1 1

)
, M−1 = 1

2

(−1 1
1 1

)
. (3.12)

Equation (3.9) is transformed into

∂

∂t

(u
v

)
=
(−1 0

0 1

)
∂

∂x

(u
v

)
, (3.13)

where

(u
v

)
= M−1

(
Ez

Hx

)
= 1

2

(
−Ez+ Hy

Ez+ Hy

)
.

The boundary conditions can be written as

u(0, y, t) = v(0, y, t), v(1, y, t) = u(1, y, t). (3.14)

This is equivalent to the requirement ofEz= 0 on the boundaries. Note also that (3.14) is
in the form (2.3) withgI(t)= gII (t)= 0 andR= L = 1.

We add to the system (3.13) an artificial zero term which is similar to the SAT term for
a one-dimensional hyperbolic system and rewrite it as

∂

∂t

(u
v

)
=
(−1 0

0 1

)
∂

∂x

(u
v

)
+
(
α[u(0, y, t)− v(0, y, t)]

β[v(1, y, t)− u(1, y, t)]

)
, (3.15)

whereα andβ are some constants.
When we return to the original variables, i.e.,Ez, Hy, we get

∂

∂t

(
Ez

Hy

)
= A

∂

∂x

(
Ez

Hy

)
+ M

(
α[u(0, y, t)− v(0, y, t)]

β[v(1, y, t)− u(1, y, t)]

)

= A
∂

∂x

(
Ez

Hy

)
+
(
−α[u(0, y, t)− v(0, y, t)] + β[v(1, y, t)− u(1, y, t)]

α[u(0, y, t)− v(0, y, t)] + β[v(1, y, t)− u(1, y, t)]

)
.

(3.16)

Using the fact that (
Ez

Hy

)
= M

(u
v

)
=
(−u+ v

u+ v
)
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we replace the boundary termsu(0, y, t)− v(0, y, t), v(1, y, t)− u(1, y, t) in (3.16) by the
original variablesEz(0, y, t), Ez(1, y, t).

Thus (3.16) becomes

∂

∂t

(
Ez

Hy

)
=
(

0 1
1 0

)
∂

∂x

(
Ez

Hy

)
+
(
αEz(0, y, t)+ βEz(1, y, t)

−αEz(0, y, t)+ βEz(1, y, t)

)
. (3.17)

We now call attention to the fact that the systems (3.9) and (3.17) are equivalent (see (3.5)).
In a similar fashion we get forEz, Hx a system which is equivalent to (3.10):

∂

∂t

(
Ez

Hx

)
= −

(
0 1
1 0

)
∂

∂y

(
Ez

Hx

)
+
(
+αEz(x, 0, t)+ βEz(x, 1, t)

αEz(x, 0, t)− βEz(x, 1, t)

)
. (3.18)

When we approximate the nondiagonalized equations (3.17) and (3.18) numerically by using
the SAT method for implementation of boundary conditions we shall add SAT boundary
terms for both directions, which resemble the artificial zero terms that appear in the equations
(3.17), (3.18). Let1x and1y be mesh widths in thex- andy-directions, and divide the axes
into subintervals of length1x and1y, respectively. Fori = 0, . . . , N1 and j = 0, . . . , N2

we use the notation

Ezi j (t) = Ez(xi , yj , t), Hxi j (t) = Hx(xi , yj , t), Hyi j (t) = Hy(xi , yj , t),

xi = i1x, yj = j1y,

N11x = 1, N21y = 1,

whereEzi j (t), Hxi j (t), andHyi j (t) are vector grid functions. We denote byezi j , hxi j , andhyi j

the numerical approximations to the projectionsEzi j (t), Hxi j (t), andHyi j (t), respectively.
Without loss of generality we takeN= N1= N2, i.e.,1x=1y.

Before proceeding to the semidiscrete problem let us define

Dx = P̃−1Q̃, Dy = P−1Q, (3.19)

where(N+ 1)× (N+ 1)matricesP, Q and P̃, Q̃ are the same matrices used to solve the
hyperbolic system in the one-dimensional case and described in detail in Part I and in [3].
We note that in practiceP−1 and P̃−1 are never evaluated. Rather, the decompositionP=
LU and P̃= L̃Ũ is calculated once for each matrix.L andU (L̃ andŨ ) are bidiagonal
matrices with one of them having “ones” along the diagonal. Hence, the inverse ofL and
U (L̃ andŨ ) is very cheap (two additions and three multiples per point).

Let [ez], [hx], and [hy] be the(N+ 1)× (N+ 1) matrices with the elementsezi j , hxi j ,
andhyi j , respectively, and denote by [ez]R

j , [hx]R
j , and [hy]R

j the j th row of each of these
matrices and by [ez]C

i , [hx]C
i , and [hy]C

i the i th column of each of these matrices.
We now write the semidiscrete approximation to (3.17) as

d

dt
[ez]

R
j = Dx[hy]R

j − P̃−1
( ES0ez0 j + ESNezN j

)
,

(3.20)
d

dt
[hy]R

j = Dx[ez]
R
j − P̃−1

(−ES0ez0 j + ESNezN j

)
,
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and the semidiscrete approximation to (3.18) as

d

dt
[ez]

C
i = −[hx]C

i DT
y + P−1

( ES0ezi 0 + ESNezi N

)
,

(3.21)
d

dt
[hx]C

i = −[ez]
C
i DT

y + P−1
( ES0ezi 0 − ESNezi N

)
,

where the(N+ 1) long vectorsESN and ES0 are exactly the same vectors as in the one-
dimensional case, i.e.,

ES0 =


τq00

(q01+ q10)

0
...

0

 , ESN =


0
...

0
−(q01+ q10)

−τq00

 . (3.22)

We now compose the two one-dimensional systems into the two-dimensional set and
approximate the equations (3.8) in the following way:

d

dt
[ez] = Dx[hy] − ([ez]

C
0
EST

0 + [ez]
C
N
EST

N

)
P̃−1−[hx]DT

y + P−1
( ES0[ez]

R
0 + ESN [ez]

R
N

)
d

dt
[hx] = −[ez]D

T
y + P−1

( ES0[ez]
R
0 − ESN [ez]

R
N

)
(3.23)

d

dt
[hy] = Dx[ez] −

(−[ez]
C
0
EST

0 + [ez]
C
N
EST

N

)
P̃−1.

3.2. Maxwell’s Equations: Numerical Simulations

The problem (3.4), (3.5), (3.7) was solved using both the fourth-order scheme and the
sixth-order scheme. The boundary conditions are imposed using the SAT algorithm de-
scribed above. In all cases, the temporal advance is via the standard fourth-order Runge–
Kutta method. The time step is chosen small enough to ensure the local stability of the
Runge–Kutta method and retain the desired overall accuracy (see footnote 1). The simula-
tions were all run to equivalent timesT = 100 for both the fourth- and the sixth-order
schemes and different grids(N= N1= N2= 20, 40, 80). We chose CFL= 1/10, τ = 2
for the fourth-order scheme and CFL= 1/15,τ = 2 for the sixth-order scheme. In Figs. 7–9
the log10 of theL2 error is computed for both schemes and different grids. As one can see,
the error grows linearly in time; no exponential growth exists, indicating temporal stability
of the schemes. Figure 11 shows theez component of the numerical solution at timeT = 2
obtained by using the sixth-order scheme withN= 80,τ = 2.

Unlike previous sections, where we compared two procedures for imposing of boundary
conditions (the conventional procedure and the SAT procedure), in this section we shall
compare our results with the results obtained by Turkel and Yefet; see [5, 6]. They solved
the same problem by using the Ty(2,4) scheme, which is a fourth-order compact implicit dif-
ference scheme on staggered meshes. For time integration they used the staggered leapfrog
method. The Ty(2,4) algorithm was run forN= 20, CFL= 1/18; N= 40, 80, CFL= 1/44.
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FIG. 7. The L2-error as a function of time for the SAT fourth-order approximation with CLF= 0.1, τ = 2,
ω1= 3π , ω2= 4π , ω= 5π . N= 20, 80.

FIG. 8. The L2-error as a function of time for the SAT fourth-order approximation with CFL= 0.1, τ = 2,
ω1= 3π , ω2= 4π , ω= 5π. N= 40.
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FIG. 9. The L2-error as a function of time for the SAT sixth-order approximation with CFL= 1/15, τ = 2,
ω1= 3π , ω2= 4π , ω= 5π . N= 20, 40, 80.

FIG. 10. The L2-error as a function of time for the Ty(2,4) fourth-order approximation forN= 20:
CFL= 1/18; for N= 40, 80: CFL= 1/44.ω1= 3π , ω2= 4π , ω= 5π .
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FIG. 11. ez component of the numerical solution atT = 2 obtained using the SAT sixth-order approximation
with N= 80, CFL= 1/15,τ = 2, ω1= 3π,ω2= 4π , ω= 5π .

The log10 of the L2 error, obtained by using the Ty(2,4) fourth-order scheme, is plotted in
Fig. 10. Note that the Ty algorithm was run with a time step,1t , almost 2 times smaller
for N= 20 and almost 412 times smaller forN= 40, 80 than one used for the fourth-order
SAT scheme. It should also be observed that the results obtained by using the SAT schemes
and presented in Figs. 7–9 are printed every1t step while the results obtained by using
the Ty(2,4) scheme and presented in Fig. 10 are printed every 1/(101t) steps (i.e., only
1000 points are printed, in contrast to about 20,000–80,000 points for our printout
graphs).

In order to check on the order of accuracy, the runs were repeated for(N= N1= N2= 20,
40, 80). Table II shows a grid refinement study for all three spatial operators. The absolute
error log10(L2) at a fixed timet = T and the convergence rate between two grids are plot-
ted. The results in this table agree very well with the predicted ones for fourth and sixth
order. We note than the error obtained by using the Ty(2,4) fourth-order scheme is smaller
than the error in SAT fourth-order scheme, but the SAT sixth-order scheme outperforms
both.

TABLE II

Grid Convergence of Schemes for the Two-Dimensional Maxwell Equations

Ty(2,4) fourth-order SAT fourth-order SAT sixth-order

Grid log10(L2) Rate log10(L2) Rate log10(L2) Rate

21 −2.677 −2.644 −3.580
41 −4.234 5.17 −4.089 4.80 −5.416 6.10
81 −5.751 5.03 −5.326 4.11 −7.261 6.13

Note. T= 10, ω1= 3π,ω2= 4π,ω= 5π . Here CFL= 1/10 for the SAT fourth-order scheme and CFL=
1/15 for the SAT sixth-order scheme. For Ty(2,4):N= 20, CFL= 1/18; N= 40, 80, CFL= 1/44.
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4. CONCLUDING REMARKS

In this Part II of this series, the methodology presented in Part I was used to solve
one- and two-dimensional hyperbolic systems. Analytical proof of time stability for one-
dimensional hyperbolic systems was obtained for a restricted class of problems, namely
when‖L‖ · ‖R‖≤1/5 for the sixth-order accurate scheme and‖L‖ · ‖R‖≤1/3 for the
fourth-order scheme. However, it has been numerically verified, by both measuring the
error for long time integrations and determining the eigenvalue spectrum of the semidiscrete
system, that the method was effective and provided time stability even when a theoretical
foundation was lacking. We have shown application in the most severe case of‖L‖·‖R‖=1.

The numerical experiments were concluded by solving the two-dimensional Maxwell’s
equations in free space. The SAT method used for solving diagonalized systems in one
dimension was adopted to solve a nondiagonalizable two-dimensional system. Numerical
results obtained by using both fourth- and sixth-order SAT schemes were compared with
the results yielded by the fourth-order Ty(2,4) scheme derived by Turkel and Yefet in [5, 6].

REFERENCES

1. M. H. Carpenter, D. Gottlieb, and S. Abarbanel, The stability of numerical boundary treatments for compact
high-order finite-difference schemes,J. Comput. Phys.108, 272 (1993).

2. M. H. Carpenter, D. Gottlieb, and S. Abarbanel, Time-stable boundary conditions for finite difference schemes
solving hyperbolic systems: Methodology and applications to high-order compact schemes,J. Comput. Phys.
111, 220 (1994).

3. A. Chertock,Strict Stability of High-Order Compact Implicit Finite-Difference Schemes—The Role of Boundary
Conditions for Hyperbolic PDEs, Ph.D. thesis, Tel-Aviv University, Tel-Aviv, Israel, November 1998.

4. B. Gustafsson, H.-O. Kreiss, and J. Oliger,Time Dependent Problems and Difference Methods(Wiley, New
York, 1995).

5. A. Yefet and E. Turkel, Fourth order compact implicit method for the Maxwell equations with discontinuous
coefficients,Appl. Num. Math., to appear.

6. E. Turkel, High-order methods, inAdvances in Computational Electrodynamics: The Finite-Difference Time-
Domain Method, edited by A. Taflove (Artech House, Boston, 1998), p. 63.

7. S. S. Abarbanel and A. E. Chertock, Strict stability of high-order compact implicit finite-difference schemes:
The role of boundary conditions for for hyperbolic PDEs, I,J. Comput. Phys.158, 1–25 (2000).


	1. INTRODUCTION
	2. 1-D HYPERBOLIC SYSTEMS
	FIG. 1.
	FIG. 2.
	TABLE I

	3. 2-D HYPERBOLIC SYSTEMS
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	TABLE II

	4. CONCLUDING REMARKS
	REFERENCES

